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Abstract. We use the method of ’damage spreading’ to measure the time taken for the 
equilibrium damage (the magnetization) to disappear in finite systems ( 1 0 s  Ls 103) at 
the critical temperature of the infinite system. This time is found to scale as L‘ with an 
exponent I of 2.16+0.02. This value is compatible with the expected value of the dynamic 
exponent for the 2D king model, but we argue that this method is unable to measure 
fluctuations properly which we show are responsible far the higher values recently reported 
in the literature. We suggest that the slowest mode of relaxation has an exponent of z 2.27. 

1. Introduction 

Our understanding of the static critical properties is on a fairly sound level, especially 
due to renormalization group (RG) theory both as a general framework for determining 
classes of systems with the same critical properties (those systems that flow to the same 
non-trivial fixed point) and as a calculational tool [l ,  21. Results from the RG transfor- 
mation have successfully questioned accepted values from the highly accurate series 
expansion [3]. Our understanding and results for the dynamic exponents of critical 
systems are not as advanced [4]. Recent work [5-81, for example, suggests that the 
dynamicexponents z for the Potts models ( q  = 2,3 ,4)  are at best only weakly dependent 
on g and in fact, the suggestion has been made that z might be independent of q [7, 8]! 
If this is true then it seems that the landscape in Hamiltonian space for fixed points 
may be decoupled in that the static properties may flow to different unstable static 
fixed points (the static universality classes of the Potts model are dependent on q )  but 
the dynamic fixed points may, in fact, be the same and only dependent on the type of 
dynamics, e.g. Glauber, Kawasaki. This would be in direct conflict with the predictions 
of RG [4] which suggest that the fixed points are determined by the static and dynamic 
properties (in the form of conservation laws) of the system. 

The static exponents for the ZD king model are known exactly but there is still 
debate on the value of the dynamic exponent z. High-powered Monte Carlo, Monte 
Carlo RG and other methods [7-241 suggest a value of -2.13 whereas recent series 
analysis [25] and a ‘damage spreading’ [26] approach suggest a value of between 2.24 
and 2.33. Some earlier work had also suggested larger values for the dynamic exponent. 
We have attempted to measure the dynamic exponent from the relaxation of the 
autocorrelation function of the order parameter. We find it difficult to extract a reliable 
region where this function shows pure exponential decay with time. We also considered 
the time taken for the magnetization, as measured by ’damage’, to relax to 0 at T, and 
the scaling behaviour of this quantity with system size gives an exponent of 2.16. 
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Section 2 reviews the standard time evolution of the king model and we then 
introduce the concept of 'damage' and its definition for envolving to the equilibrium 
magnetization. We consider the time evolution of the autocorrelation function of the 
magnetization but find that it is difficult to extract the exponential region from the 
curve. We next consider the time taken for the 'damage' (magnetization) to go to 0 at 
T.. We find a dynamic exponent of 2.16, a value compatible with the accepted value. 
We compare this method of measuring the dynamic exponent with the method of 

strong fluctuations expected in two dimensions. These fluctuations are responsible for 
the larger dynamic exponent. We conclude that z is greater than 2.16 and most likely 
has a value of -2.27*0.05. 

Poo!e and .!ax [?6j and shw that the !atter is &!e to take ink? acceux: :he :athe: 

2. Time-dependent phenomenon 

The Hamiltonian for the Ising model contains no explicit or implicit time-dependent 
features. It is simply a potential function. We may formulate a time-dependent operator 
which has the desired property of sampling the equilibrium phase space of the model 
[12], which we perform below. 
Ox gnz! is !n conrtr??d a time evo!l?!inn operator A sl?rh that 

lim Ap[u]=p.,[u]. 
I-m 

Consider the following master equation: 

a(P[U13 t ,  = 1 { P (  [ U]', 1) W([ U]'+ [U]) - P([ U], t )  W([U] + [U]')}. 
at c r y  

This equation describes the rate of change of the probability of the state [U] as equal 
to the probability of the state [U'] times the transition rate from the state [U'] to the 
state [ U ] ,  i.e. the probability of evolving from some other state to the state in question 
minus the probability of evolving out of the state in question (probability of the state 
[g] !imes !hc !.an&ion from !he state [g! to [g'j) The ecpilibrium distribution 
is stationary in time 

where E ( ? )  is the energy of the system with the ith spin up and E ( 3 )  is the energy of 
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the system with the ith spin down. These conditions are satisfied if 
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which is the transition probability from -ui to ut, We implement these transition 
probabilities in a particular way-whenever a site is visited the state of this site is 
ignored and the probability considered is that of finding the central site in the up state. 
If the random number is less than this probability then it is set up, otherwise, it is set 
down. This is referred to in the literature as heat-bath dynamics [27]. 

The evolution of the probability distribution is 

(8) 

and its soiution is 

P([ul, t )  =e*'P([u], 0) (9) 

or 

where Pf,iuj are ihe eigenvectors and ,i8 are the eigenvaiues of A and a, are the 
coefficients that define the initial probability distribution. The associated eigenvalue 
to P., is A,=O. For a finite system all other eigenvalues are finite and negative so that 
the system eventually evolves to equilibrium. The slowest mode of relaxation is 
- A ,  = 1 / ~ ~  and dynamic scaling asserts that T~ - L', where L is the linear size of the 
system and z is the dynamic critical exponent. 

3. Damage 

The concept of damage spreading has been used to test the stability of cellular automata 
to small perturbations [28,29]. Two identical systems are constructed (same rules and 
same initial states). A small perturbation is introduced either by changing the rules or 
the states of a few sites [30] in one system and the time evolution of the Hamming 
distance is monitored. If the Hamming distance remains small and/or localized the 
system is considered to he stable; otherwise it is considered to he chaotic. This technique 
has also been applied to thermal systems [24,27,31,32] where the same random 
numbers are now used in the update of the spins in the two systems. 

Coniglio et a1 [33] drew attention to the fact that there were two distinct types of 
damage at a site i: 6:- and 6:'. 6'- represents the case where the spin at site i is 
up in system A and down in system B, while d-+ represents the opposite case, namely 
that the spin at site i is down in system A and up in system B. These authors also 
noted that for an appropriate initial damage there exist exact relationships between 
the equilibrium damage difference as defined above and thermodynamic quantities. 

Consider the case where the boundary spins in system A are kept permanently in 
the up state while the equivalent boundary spins in system B are kept permanently 
down. We allow the systems to equilibrate under these conditions with heat-bath 
dynamics and consider the damage difference of the sites, excluding the boundary 
sites. Let P ;  be the probability that the origin is up in system A and P; the probability 
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that the origin is up in system B. P is the probability that the origin is damaged, then 
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P=PP-P ,B .  
We define the following operators: * - ?  

T o  = ;( 1 + uo) 0 - 2 ( 1  - s o )  

where (. . .) is the thermal average of system A and b refers to the boundary spins and 

where (. . .) refers to the thermal average of system B. 
From the symmetry of the Hamiltonian 

Therefore P =  Pi’- P ; - P f =  M, where M is the magnetization of the system, since 
for a large system the effects of the boundary spins will be negligible on the central 
site. In other words, the damage difference leads to the magnetization. 

4. The antocorrelation function and disappearance of the damage 

The traditional means of measuring the characteristic time T is by observing the 
autocorrelation function of the magnetization C (  1 ) .  

We measured the magnetization via the above-mentioned ‘damage’ method and a 
typical graph is shown in figure l ( a )  for 100000 independent trials and system size 

C l t l  

t 

Figure I. ( a )  Autocarrelation function of the magnetization C(t)  versus time for 1IXIOOO 
independent trials and a system size of L =  24. ( b )  In of the autocorrelation function C(t) 
versus time. 
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L=24. The In of C ( t )  versus f is shown in figure l(b).  We find it difficult to estimate 
r ( L )  with a high degree of accuracy. Our results with this method would lead us to 
conclude that z > 2 but not much more. 

Following a suggestion by Coniglio and Poole, we monitor the time taken for the 
equilibrium damage (i.e. the magnetization) to disappear once the boundary conditions 
are removed. We begin with this initial state (boundary sites permanently damaged) 
and allow it to evolve until the equilibrium damage has been reached. The damage 
which has occurred in the system due to the boundary sites ieads as before, to the 
magnetization of the system. 

The next step is to ‘turn off the influence from the boundary sites, that is, the 
boundary sites are no longer pinned and are replaced by periodic boundary conditions. 
We then allow both systems to evolve under the same heat-bath dynamics until 
eventually these systems have reached a point where there are absolutely no damaged 
sites anywhere in the system. In other words, the systems evolve until the magnetization 
(damage) relaxes from its equilibrium value to a value of zero. This time is directly 
related to the characteristic time. Figure 2 shows the In-In plot of the variation of this 
characteristic time with system size. We see a fairly good straight line from L =  10 to 
L = 100. Over 5000 trials were performed for the smaller systems and a1000 for larger 
lattices. The slope of this graph, and hence z, is 2.16. We estimate an error margin of 
*0.02 from considering the maximum fluctuation of the results from various regions 
of L. We did not observe any systematic change in z with L. The value of z = 2.16 kO.02 
may be interpreted as follows: all values within the range 2.14-2.18 we consider to be 

L 

Figure 2. In-In plot of the time taken for the magnetization (damage) lo disappear versus 
system size L (10s Lr103). The error bars are shown by arrows when they are greater 
than the data points. The slope of the straight line is 2.16. 
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indistinguishable from our result, but we cannot completely rule out values of z in the 
ranges 2.12-2.14 or 2.18-2.20. However, our result is incompatible with values of z 
less than 2.12 or greater than 2.20. 

K Maclsaac and N Jan 

5. Conclusion 

The result z = 2.16* 0.02 is in agreement with many of the recent resu!ts [& ?! reported 
in the literature. Recently Poole and Jan [261 monitored the time taken for the damage 
to reach the edge of various size systems starting with a central site permanently 
damaged. They reported a value of 2.24i0.04. Manna [34] repeated this work but 
with larger lattices, and found a value of z of 2.27 (no quoted error bars). We may 
ask  wherein lies the discrepancy between these higher values and the value of -2.16? 

Consider the spread of damage in two identical equilibrium systems apart from a 
permanently damaged central site. The damage will grow but due to large fluctuations 
it will often disappear, that is, it is reduced to a single damaged site before it eventually 
reaches the edge. This has been observed to occur several times before the damage 
eventually reaches the edge. In the above-mentioned work by Poole and Jan, the total 
time taken is recorded. Consider the case where we ignore the time taken in all previous 
attempts to spread the damage but only start from the last attempt from the single 
permanent damage and monitor this time for the successful reaching of the edge of 
the system. This is equivalent to the case considered here. An alternative way of 
appreciating this point is to consider the reverse case-when the damage has success- 
fully reached the edge remove the constraint of a permanently damaged central site 
and measure the time taken for the damage to disappear. This is similar to the case 
we have considered for the disappearance of the magnetization. This would lead to a 
dynamic exponent of 2.16 because this approach is unable to measure the non-trivial 
fluctuations. We consider that these fluctuations are essential and would lead to an 
erroneous conclusion if ignored. We believe that the traditional methods are unable 
to account for these fluctuations. We draw the reader’s attention to  two further points: 

(i) The recent work of Rogiers and lndekeu [25] from an extension of the series 
expansion report a value of 2.33 which we consider as an independent confirmation 
oi our conciusion. 

(ii) Poole and Jan [26] report a value of z for the 3D king model of 2.02*0.01 
which is in excellent agreement with the &-expansion and other methods. This method 
is trivially exact for the I D  Ising model as the damaged site simply performs a random 
walk and hence z is 2. 

Our main conclusion is that methods which cannot take into account the important 

that unless the various different numerical methods agree then this problem is still 
open and may perhaps be resolved when more terms have been added to the series 
expansion. We consider 2.16 to be a lower bound for the dynamic exponent z and 
believe that the exact value is closer to 2.27. 

fiuctuations present in the ZD ising modei wiii Biid 8 vaiiie of z of -2.16. W e  be:ie~e 
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